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Abstract

We relate the Bohr–Sommerfeld conditions to formal deformation quantization of symplectic manifolds by classifying star
products adapted to some Lagrangian submanifold L , i.e. products preserving the classical vanishing ideal IL of L up to IL -
preserving equivalences.
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1. Introduction and motivation

1.1. Reminder on Bohr–Sommerfeld conditions

Let L
iL
↪→ T ∗Q be a Lagrangian submanifold of some cotangent bundle T ∗Q

π
→ Q with respect to the standard

symplectic structure ω := −dθ given by the canonical form θ := T ∗π , and µ its Maslov class. Then L has to satisfy
the prequantization condition

1
2πλ

i∗Lθ −
π

2
µ ∈ H1

d R(L ,Z). (1)

in order to be the microsupport of some λ-oscillatory distribution on Q (see Appendix for references), where Hd R(.,Z)
denotes the integral de Rham classes.

In particular, if L E := H−1(E) is a Liouville torus of some semiclassical integrable system with classical moment
map H : T ∗Q → Rn and vanishing subprincipal form1 κ , then the condition (1) coincides up to higher orders O(λ1)

with the Bohr–Sommerfeld conditions

1
2πλ

i∗Lθ −
π

2
µ+ κ + O(λ) ∈ H1

d R(L ,Z) (2)
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1 Let si be the second-order part of the Weyl symbols of the Ĥi , then by definition κ.X Hi = −si .
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for the existence of a joint asymptotic eigenvector of the system.
Recall here that a semiclassical integrable system is a maximal set of commuting λ-pseudodifferential operators

Ĥ1, . . . , Ĥn whose principal symbols H = (H1, . . . , Hn) are independent almost everywhere. Then the compact
fibers L E of H restricted to regular values B are Lagrangian submanifolds with a transitive locally free Rn action
φ : Rn

3 t 7→ expX 〈t, H〉 generated by the Hamiltonian vector fields X Hi := ω−1d Hi , hence they are tori
L E ∼= Rn/ kerφ|L E

∼= Rn/Zn . This action is linearized in action-angle coordinates; similarly, the semiclassical
system is microlocally unitary equivalent to the linearized system, such that the microlocal solutions (oscillatory
constants) form a local system whose triviality is the Bohr–Sommerfeld condition (2), cf. [28].

1.2. Problems with interpretations in deformation quantization

The Bohr–Sommerfeld condition (2) makes precise the original notion of quantization as ad hoc discretization of
classical spectra. However, it is undefined in formal deformation quantization, a notion isolating the transition from
commutative to noncommutative algebras underlying any quantization concept (see Appendix, (18) for references).
Here the deformation parameter λ is formal, one thus has consider convergent deformations (of a subalgebra) over
some base including [0, h̄] to recover the meaning of (1). However, we can try to extract the prequantization class in
(1) from deformation quantization as formal class. This has been done in [25] by formalizing the symbol calculus of
oscillatory distributions. Here, we proceed differently:

1.3. Main results and outline

Motivated by oscillatory symbol calculus as well, we first consider ?-representations on line bundles over L ⊂ X .
Then we look for star products inducing a canonical representation on L , namely, we establish a bijection between
the classes of deformation quantizations of X preserving the classical vanishing ideal IL ⊂ C∞(X)[[λ]] of L up to
IL -preserving equivalences and those of formal deformations of the symplectic form viewed as relative class. This
is done in Section 3 by parametrizing adapted Fedosov star products. Then in Section 4 we consider the induced
intertwiners on the quotients as formal analogues of L-deformations in order to explain the coincidence of (1) with
adapted classes in the lowest order. Finally, we sketch relations to the Maslov index and the symbol calculus of
oscillatory distributions. The Appendix provides the motivating background and sets up some (standard) notations.

2. Representations on line bundles

Let ? be a star product on a symplectic manifold X and E some vector bundle over a Lagrangian submanifold
L ⊂ X . A ? representation on E means a ?-module structure on Γ (E)[[λ]] such that ? acts by C[[λ]]-linear differential
operators.

Finally, define a deformed flat line bundle on L by the requirement that its sheaf of local sections is locally
isomorphic to the constant sheaf exp(C[[λ]])L of the units exp(C[[λ]]) ⊂ C[[λ]]. The isomorphism classes of such
bundles are then given by Ȟ1(X, exp(C[[λ]])L) like in the undeformed case of flat line bundles. This group now acts
naturally on ? representations on E thanks to their C[[λ]]-linearity. The action turns out to be free and transitive:

Lemma 1. ? is representable on some complex line bundle E over a Lagrangian submanifold L if and only if
the image cR1 (E) of its Chern class c1(E) under R : H2(L ,Z) → H2

d R(L) coincides with the restriction of the
equivalence class [?] of ?:

cR1 (E) = i∗L [?]. (3)

The spaceME of isomorphism classes of ? representations on E identifies with the group of deformed flat line bundles
Ȟ1(L , exp(C[[λ]])L) via its natural action onME .

Proof. This is a direct consequence of Bordemann’s classification: Consider the restriction of ? to some tubular
neighborhood of L which we may identify with a neighborhood W of the zero section in (T ∗L ,−dθ) by some
Weinstein isomorphism (cf. [7, Th. 4.19]). Then by [5, Th. 3.3] the product ?|W is equivalent to a standard ordered
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product ?B , [B] = i∗L [?], whose representation • on some complex line bundle E on L must locally on some
contractible set Ui look like

(π∗ψ • φ) = ψφ, (θ.X̂) • φ|Ui = −2λ(X −
Ai .X

2λ
)φ|Ui (4)

for any φ ∈ C∞(L) and any vector field X ∈ Γ (T L) with canonical lift X̂ ∈ Γ (T0T L). Here the Ai are determined
by d Ai = B|Ui up to some coboundary d Si , which determines •|Ui up to some local intertwiner (gauge equivalence)
φ|Ui 7→ eSiφ|Ui . Thus (3) must hold, which determines the representation up to isomorphism classes of formal flat
connections

λH1
d R(L)/2π i H1

d R(L; Z)+ λ2 H1
d R(L)[[λ]]

on the chosen torsion bundle in kerR. �

Remark 1. Consider two line bundles E, E ′ over L . If E is a ? representation and c1(E ′) − c1(E) ∈ im(i∗L :

H2(X,Z) → H2(L ,Z)) then one may obtain a ?′ representation on E ′ via Rieffel induction:
Namely, it was shown in [8] that Pic(X)n Aut(X, ω) acts transitively on the Morita equivalent equivalence classes

of ? such that [(L, φ) · ?] = [?] + cR1 (L). Here the symplectomorphism φ ∈ Aut(X, ω) acts by pull back while the
action of the line bundle L on X arises by deforming its transition 1-cocycles to ?-cocycles defining an equivalence
(?′, ?)-bimodule L, cf. [8, sec. 4.2]. Hence L ⊗? E indeed defines a ?′ representation on i∗LL⊗ E .

3. Adapted star algebras

Recall that a star product ? on X is called adapted to some Lagrangian submanifold L ⊂ X if the classical
vanishing ideal IL := { f ∈ A| f |L = 0} of L in A := C∞(X) remains a ?-left ideal IL = IL [[λ]] and thus
induces a ? representation A[[λ]]/IL on L . Such products are formal series of one chains of the subcomplex
KIL :=

{
C ∈ C•(A;A)| C(A⊗•

⊗ IL) ⊂ IL
}

of the differential Hochschild complex2 of A fitting into an exact
sequence

KIL ↪→ C � C(A; C1(IL ;A/IL))[−1]

by [3, Prop. 2.2]. Its corresponding long exact cohomology sequence decouples into short exact sequences isomorphic
to the one defining relative de Rham forms

Ω(X, L) ↪→ Ω(X)
i∗L
� Ω(L). (5)

This was shown locally in [3, Th. 2.4] for the ω-corresponding multivector fields via Koszul resolutions, from
which the global case can be deduced by the degeneration of the local-to-global spectral sequence at E pq

2 =

H p(Ωq(X, L)X ) = Ωq(X, L)δp0. However, we will not use this “adapted HKR theorem”, although together with
(21) it implies directly the following Lemma: Denote by δ the connecting homomorphism of the long exact sequence

· · · H•

d R(X) → H•

d R(L)
δ

→ H•+1
d R (X, L) → H•+1

d R (X) · · · (6)

associated to the relative de Rham sequence (5). Then we have:

Lemma 2. Let S be an equivalence between two star products ?, ?′ on X both adapted to L. If δH1
d R(L) =

{0} ⊂ H2
d R(X, L), then S is adapted, i.e. preserves IL and hence provides an equivalence3 of represented algebras

(?, ?/IL) ∼ (?′, ?′ /IL).

2 Recall that the differential Hochschild complex C•(A,M) of A with values in some A ⊗ Aop
-representation M consists of M-

valued differential C-multilinear operators Ck−1(A,M) := Homdiff
C (A⊗k ,M) with coboundary bC( f0, . . . , fn) = f0C( f1, . . . , fn) +∑

i (−1)i+1C( f0, . . . , fi fi+1, . . . fn)+ (−1)n−1C( f0, . . . fn−1) fn .
3 Following [5, Prop 3.4] we call two represented algebras (A,H), (A′,H′) equivalent if there is an isomorphism S : A → A′ and an

“intertwiner” T : H ∼
→ H′ such that T ( f · ψ) = S( f ) · Tψ .
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Proof. Suppose that ?, ?′ are already identical up to O(λk) thanks to an equivalence adapted up to O(λk). Then by
(21) and (22) one has Lichnerowicz’s equation

?′ −? = bT + dα(X .,X .) mod O(λk+1) (7)

for some α ∈ Ω1(X), where b is the Hochschild coboundary of the undeformed product ’·’. As decomposition into
symmetric and antisymmetric parts, both summands have to be adapted by induction hypothesis, so di∗Lα = 0. Now
by the assumption there exists some relative primitive of dα we may suppose to be α itself.

Then the equivalence Sα := 1 + λk−1αX is adapted and turns the difference into a coboundary

Sα(?
′)− ? = λkb(T − [T, αX ]) =: λkbT ′ mod O(λk+1)

which is adapted if and only if T ′ is, since bT ′(IL , IL) ⊂ T ′(I2
L) + IL . Thus S′

:= (1 + λk T ′) ◦ Sα is an adapted
equivalence modulo O(λk+1). �

3.1. Reminder on Fedosov’s construction

There is a construction of natural4 Weyl type star products due to Fedosov [13] which has a natural interpretation
in formal geometry context as observed by [24]:

Let R̂2n := (C[[ξ1, . . . , ξ2n
; λ]], ∗W ) denote the formal Weyl algebra

f ∗W g := µ0

(
exp

(
λ

2i
ωi j∂i ⊗ ∂ j

)
f ⊗ g

)
, (8)

where µ0 denotes the standard multiplication. ∗W is Z-graded by deg λ = 2, deg ξ = 1 and invariant under the linear
symplectic group Sp(n,C) ∼= ad R̂2n

2 generated by quadratic forms in R̂2n
2, where as usual the subscript denotes the

degree.

One now considers infinitesimal patching of local algebras on X , i.e. the bundle P of isomorphisms jetx (X)[[λ]]
∼
→

R̂2n , x ∈ X , deforming the real symplectic frame bundle Sp(X) =
⋃

x (Tx X, ωx )
∼
→ (R2n, ω0). Then the natural

isomorphism θ : Tx P
∼
→ g :=

{
i
λ

ad f
∣∣ f ∈ R̂2n,=( f ) = 0 mod O(λ)

}
is a flat g-valued connection, i.e. a Sp-

equivariant 1-form such that its composition with the sp-action is the inclusion sp → g and the curvature dθ+
1
2 [θ, θ]

vanishes. Now any reduction of the structure group given by a section r of P → Sp(X) induces a flat connection
∇F = d +

i
λ

ad r∗θ on the associated Fedosov bundleW := Sp(X)×Sp(n) R̂2n . By [24], its constant sections ker ∇F
are isomorphic to a star product algebra on X via r whose characteristic class is represented by the pullback by r of
the curvature of the lift of θ to a connection with values in the central extension R̂2n of g.

More explicitly, any Fedosov connection ∇F has to start with an equivariant degree −1 square zero differential
fixed as

−δ := −
i

λ
ad r∗θ1 := −

∂

∂ξ i ⊗ dx i .

Further the λ-independent degree zero part ∂
∂x l +

i
λ

ad Γ l
jkξ

jξ k represents a torsion free symplectic connection ∇.

Thus the simplest Fedosov connection is of the form ∇F = −δ + ∇ +
i
λ

ad∗W γ for some γ ∈ Ω1(X;W≥3).
However, to get natural products of different order type, one needs equivalent fiberwise degree 0 products

∗ = µ0 exp( λ2iµi j
∂
∂ξi

⊗
∂
∂ξ j
) = eλS(∗W ), where S is a fiberwise degree −2 differential operator with fiberwise

constant coefficients, which in turn requires Fedosov derivations of the generalized form (cf. [23])

∇F = −δ + D +
i

λ
ad γ, (9)

4 Following [14], we call a star product ? natural if ?k is of differentiation order ≤ k in each argument.
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where D is a degree 0 ∗-derivation with D|1 ⊗ Ω(X) = d, D2
= −

i
λ

ad R and [D, δ] =
i
λ

ad T for totally covariant
curvature and torsion tensors R and T . Namely, we may and will take the torsion free derivation

D = ∇ +
iλ

2
[∇, S]. (10)

Note that at this point it might become more natural to work with the deformation of the symmetric algebra ST ∗ X
induced by (W, ∗) and the canonical isomorphism W/λW ∼= ST ∗ X , as (W, ∗) is no longer given as associated
bundle.

Now, for any formal closed two form Ω ∈ Z2
d R(X)[[λ]] and any s ∈ W≥4 with trivial central part σ(s) = 0 the

equations

δγ = Dγ −
1
λ
γ ∗ γ + R + Ω , δ−1γ = s (11)

determine γ such that ∇F will be a Fedosov connection whose constant sections (ker ∇F , ∗) are naturally isomorphic
to a natural star product ?F of class [?F ] = [λ−1ω+ Ω ]. More precisely, ∇F extends to an acyclic superderivation on
Ω(X,W) with contracting homotopy

∇
−1
F α := −δ−1 1

1 − [δ−1, D +
i
λ

ad(γ )]

(in the sense of the geometric series), where δ−1 is defined as homotopy on the center (δ−1δ + δδ−1)α = α − σ(α).
Then the isomorphism ?F ∼= ker ∇F ∩W is given by the restriction of σ with inverse τ( f ) := f − ∇

−1
F d f .

Using [23, 1.3.25,27], one checks that the parametrization by ∇,Ω , ∗, s is redundancy free for fixed ∗. Moreover,
it is conjecture that any natural star product arises as generalized Fedosov star product.

Proposition 1. A generalized Fedosov star product ?F on T ∗L given by (9)–(11) is adapted to L if and only if its
construction data ∇,Ω , ∗, s are adapted, i.e:

i. ∇ restricts to a connection on L. By the absence of torsion this is equivalent to L being totally geodesic.
ii. L is Lagrangian for the “deformed symplectic structure” ω + Ω

iii. s ∈ IT L , where IT L = (T L0)[[λ]] is the (C[[λ]]-extended) fiberwise vanishing ideal of T L generated by the
annulator T L0

⊂ ST ∗ X of T L.
iv. The fiberwise product ∗ is adapted to IT L , i.e., in symplectic fiber coordinates q i , p j over L such that IT L =

(p1, . . . , pn) we have S =
λ
2i

∂
∂p j

∂
∂q j and ∗ = µ0 exp( λ2i

∂
∂p j

⊗
∂
∂q j ).

Proof. Let I s,p
F ⊂ Ω p(X,Ws) be the subspace of adapted forms whose restriction to ∧

p T L has per definition values
in IT L . Now, if all construction data are adapted, then γ ∈ IF , since the same holds for all summands in (11). Here the
only nonobvious term is [∇, S], where the claim holds if ∇ is the homogeneous adapted connection ∇

0 used in [4],
then it follows in general by ∇ − ∇

0
∈

i
λ

ad I 2,1
F . Thus ∇F preserves IF such that τIL = ker ∇F ∩ IT L , hence ?F is

adapted. – Vice versa:
i. Let σ ′ denote the projection Ω(X,W) → Ω(X,C)[[λ]]. We have σ ′δτ f = δδ−1d f = d f . Now d f |T L = 0 for

any f ∈ IL , so adaptivity implies

σ ′δ(X ∗ τ I )|T L = 0 ∀X ∈ ker ∇F , I ∈ IL (12)

with τ f = f + D f + D2 f modulo deg ≥ 3, where D = [δ−1,∇] here and in the following denotes the induced
symmetric covariant connection onW . Thus (12) implies

0 = (X ∗1 δD2 I )|T L (13)

for some X of total degree 1. By iv X∗ only differentiates along L , thus for any vector fields X, Y tangential to L one
has 0 = D2 I (X, Y )|L = d I (∇X Y + ∇Y X)|L = d I (2∇X Y )|L by the absence of torsion and d I.[X, Y ]|L = 0, thus
∇X Y must be tangential to L .
iv. Since τ k

= Dk modulo lower-order differentiation along Z , we have

f (?F )k I = µI J ∂
I f ∂ J I modulo lower-order differentiation (14)
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for some nondegenerate tensor µ ∈ Γ (Wk ⊗Wk). In particular, adaptivity and (20) imply µi j =
∂
∂p j

⊗
∂
∂q j for k = 1.

ii and iii Allow s ∈ W≥3 to make Ω locally redundant as in [23, 1.3.27], and denote by τ(s) the dependence
of τ on s. Then by Lemma 2 and adaptivity of ?F for adapted construction data including s = 0 we must
have σ(τ(s)2k

− τ(0)2k)IL ⊂ IL . Now sk first occurs deg-inductively in τ 2k−2 as [δsk f, τ k−1 I ]∗k−1 , hence
τ k−1 I ∗k−1 δsk f |T L = 0 for all I ∈ IL , thus s is adapted by standard order of ∗. �

Remark 2. Note that Ωk enters explicitly as ?∇,Ω+λkΩk ,◦,s = ?∇,Ω ,◦,s +λk+1Ωk(X .,X .) mod O(λk+2).

Now identify some zero section environment of T ∗L with some neighborhood of L ⊂ X via some Weinstein
isomorphism. Then note that there are no obstructions for the extension of the data to all of X : For the fiberwise data
this is clear from partition of unity, for the connection this follows from the description of the space of symplectic
connections as sections of the fiber bundle J 1Sp(X)/Sp having contractible fibers F := J 1

0 (R
2n, Sp)1 = R2n

× sp

(see [18]), hence the obstruction classes H i (X, L;πi−1(F)) vanish. (Note that this argument ignores torsion, which
is possible due to [23, prop 1.3.31].)

Now by (3) the characteristic class [?] of an adapted star product must have a relative representative η ∈

Z2
d R(X, L)((λ)). For any relative cocycle η the above construction yields an adapted Fedosov star product ?F with
η = λ−1ω+Ω , and two adapted Fedosov products differing only in their 2-forms by λkdα mod O(λk) are equivalent
through Sα := 1 + λk−1α.X mod O(λk) by Remark 2 and (7), which covers the cohomology in (7). Since Sα is
adapted if and only if i∗Lα = 0, i.e. [dα] = 0 ∈ H2

d R(X, L), we obtain:

Theorem 1. The adapted equivalence classes [.]L of L-adapted deformation quantizations are in bijection to relative
formal ω

λ
-deformations

λ−1
[ω] + H2

d R(X, L)[[λ]]

where the image and kernel of H2
d R(X, L)[[λ]] in the long exact sequence (6) correspond to the absolute class and the

adapted classes therein, respectively. �

Remarks. 3. In the preprint [3] the generalized problem of deforming the adapted HKR quasiisomorphism to an
adapted G∞ resp. L∞ morphism has been attacked locally, see as well [10].

4. As shown by Gromov [22, Th. 7.34], for an open manifold any de Rham cohomology class is representable by
a symplectic form unique up to isotopy. This of course does not hold in the relative case, for instance the trivial
class in H2

d R(R
2, S1) has no symplectic representative ω by

∫
intS1 ω 6= 0. In fact, the same holds for any compact

Lagrangian submanifold L ⊂ R2n by the above isotopy theorem and Gromov’s nonexistence theorem of exact
L ⊂ R2n [22, Th. 13.5].

5. By the same method, we can construct star products adapted to transversal intersections of Lagrangian
submanifolds or all the fibers of a regular Lagrangian fibration.

4. Relation to Bohr–Sommerfeld conditions

We now want to “deduce” the prequantum Bohr–Sommerfeld conditions from the picture

1
λ

i∗Lθ + H1
d R(L)[[λ]]

im 1
λ

H1
d R(X)[[λ]]

� � δ //

��

OO

��

ω
λ

+ H2
d R(X, L)[[λ]] //

OO

��

ω
λ

+ H2
d R(X)[[λ]]OO

��adapted classes
inside an absolute class

adapted classes absolute classes

(15)

following from Theorem 1.

Lemma 3. Consider the group of equivalences Sα = eλα.X between adapted star products modulo adapted
equivalences, which is homomorphically parametrized by i∗L [α] ∈ H1

d R(L)[[λ]]. Then the action of Sα on equivalence
classes of pairs {(adapted star product, canonical representation)} induces the action of the flat deformed line bundle

Eα with holonomy π1(L) 3 γ 7→ eiλ
∫
γ α on representation classesM0 (Lemma 1).
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Indeed, in a Weinstein model T ∗L near L with Darboux coordinates I, ϕ we can assume that α = αi dϕi near L for
αi ∈ C[[λ]], then Sα acts on contractible patches like the inner automorphisms Sα = eλαi {ϕi ,·} = eλαi ad?(ϕi ) on the
standard ordered product ? of T ∗L . As inner automorphisms induce self-intertwiners of ?/IL , globally we get the
desired action of Eα onM0. �

Hence in the case of convergence, integral adapted equivalences Sα, λi∗Lα ∈ H1
d R(L ,Z) should provide

intertwiners between formally in-equivalent representations which correspond to relative quantization conditions as
follows:

4.1. Relative conditions

Restrict H to a regular torus fibration Hreg = H |Xreg over B near L . Then there is a natural identification
R1 HregR = TB obtained as dual of the action differential γi 7→ d Ii := d

∫
γi
θ .

In particular, we can canonically identify small αi [dϕi ] ∈ H1
d R(L) with the translated torus Lα :=

H−1
reg (α1, . . . , αn) (in action coordinates with origin 0 = H(L)) which equals the image imαi dϕ ⊂ T ∗L in the

Weinstein model near L determined by the action-angle coordinates.
Now Sα maps the vanishing ideal IL of L to that of the translated Lagrangian torus Lα: In fact, infinitesimally, this

map corresponds to the isomorphism

HomA(IL/I 2
L ,A/IL) ∼= Γ (TL X/T L) ∼= Ω1(L) :

d
dλ

∣∣∣∣
0
Sα = α.X 7→ [ω−1α|L] 7→ i∗Lα

where A := C∞(X), IL := ker i∗L ⊂ A are the classical A-modules.
Hence for integral i∗Lλα, Sα intertwines the canonical ? representations (D-modules) ?/IL , ?/ILα on L and Lα .

But such intertwiners correspond to joint (α1, . . . , αn)-eigenspaces of Hreg by the standard D-module identity (cf. [17,
Ch. 0])

ker
(
(Hreg,i − αi ) :

A
IL

→

(
A
IL

)n)
= homD

(
D

(Hreg,i − αi )
,
A
IL

)
.

Remark 6. Note that our reference Lagrangian L ⊂ Xreg itself is always quantizable and in order to speak of
nontrivial relative classes on Xreg, one has to identify the class αi [dϕi ] ∈ H1

d R(L) with αi [dϕi ]⊕ 0 ∈ H1
d R(−L ∪ Lα)

giving a meaningful class in H2
d R(Xreg,−L ∪ Lα). Then by (1) and (2) the relative integrality conditions are indeed

related to the the joint asymptotic spectrum of H (the Bohr–Sommerfeld conditions) by an embedding H(Xreg) → Rn

which is integral affine in leading order.

4.2. Bohr–Sommerfeld conditions

Similar to the embedding of relative spectra in Remark 6, “combining” the relative conditions with the formal
picture (15) through Lemma 3 now leads to the following

Suggestion 1. Let ? be a deformation quantization of a symplectic manifold (X, ω) adapted to a Lagrangian
submanifold L. Then the formal analogue of (the δ-image of) the prequantum Bohr-Sommerfeld class (1) is given
by [?]L .

The point of our approach to prequantum Bohr–Sommerfeld classes is that it reproduces the leading order 1
λ

i∗Lθ of
(1) and (2) already on the formal algebraic level without involving WKB type methods. This gives another explanation
of the independence of the leading-order conditions on the quantization itself. Moreover, it generalizes them to
arbitrary symplectic manifolds where the integrality condition on relative classes implies one on absolute classes
as required by geometric quantization.

On the other hand, the Maslov class is not visible in this approach. Let us note though that it can be easily extracted
from adapted Fedosov star products as follows:
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4.3. Maslov index

For the Maslov class µ to be defined consider an additional Lagrangian fibration π of X around L (the example
in mind is of course the vertical fibration in the case of X = T ∗Q). Let ∇(?F ),∇(?

′

F ) be the symplectic connections
inside the Fedosov connections of two Fedosov star products ?F , ?

′

F adapted to L and the fibers of π respectively. On
TL X , we may further assume these connections to be unitary with respect to some compatible almost C-structure on
X , such that the difference ∇(?F )−∇(?′F ) is identified with a horizontal u(n)-valued equivariant 1-form on the unitary
frame bundle of X restricted to L . In this identification the Maslov class µ defined by L and π may be calculated from
?F , ?

′

F as secondary characteristic class:

Corollary 1.

µ = 2i∗L trC(∇(?F )− ∇(?′F )).

Indeed, by Proposition 1 the connections are adapted and thus related by local gauge transformations g : X ⊃ V →

U (n) representing k (see Appendix), hence over L we have (cf. [26])

i

2π
trC(∇ − ∇

′) =
i

2π
tr(g−1dg) =

i

2π
d ln det g =

1
2
(det2g)∗d(ln : ez

7→ z).

Note that the Liouville class cannot be extracted likewise as characteristic class in general, but if S = τ≥3 H and

∇
′

F = e
i
λ

ad S
∇F e−

i
λ

ad S , one calculates ω(∇ − ∇
′) = δτ 3 H = LX H (∇).

5. Preliminary analogues to symbol calculus of FIOs

Recall (cf. [7]) that in generalization of (graphs of) symplectomorphisms a canonical relation Λ is defined as
Lagrangian submanifold of X ′

× X , where (X, ω) := (X,−ω) denotes the symplectic conjugated space. The
composition

Λ1 ◦ Λ2 = Λ1 ×X ′ Λ2 = π14(π
−1
12 Λ1 ∩ π−1

34 Λ2)

(here the πi j denote the canonical projections of X ′′
× X

′
× X ′

× X onto the is and js factor) may then be identified
with the image of Λ1 ×Λ2 under symplectic reduction of X ′′

× X
′
× X ′

× X with respect to the canonical coisotropic
manifold C := X ′′

× ∆ × X . Λ1,Λ2 are called composable if C intersects Λ1 × Λ2 cleanly, then the product is an
immersed Lagrangian submanifold L . Since multiple points of the immersion correspond to multiple intersections of
L with some fiber of the characteristic foliation π14|C of C , it will be an embedding if the closure of L intersects any
fiber at most once.

In terms of the corresponding function algebra A := C∞(X), the above fiber product corresponds either to the
topological tensor product

A′′
⊗̂A′op

IΛ1

⊗̂A′

A′
⊗̂Aop

IΛ2

or, in terms of symplectic reduction, to

N (IC )/IC + IΛ1×Λ2 ,

where N (IC ) is the Poisson normalizer of the vanishing ideal of C , which consists of functions constant along the
fibers of the characteristic foliation π14|C .

The deformed analogue of a canonical relation Λ will then be a ?′ ⊗ ?op-module structure on some flat formal line
bundle over Λ, which is of the form can ◦ S ⊗φ for some Λ-adapted star product S(?′ ⊗ ?op) and some flat line bundle
φ over L , where the equivalence S is nontrivial unless Λ is itself a product. In the case of graphs Λ = graphψ , it was
observed by [5, Prop. 3.1] that modulo phase these bimodules yield not more than homomorphisms of star products
deforming ψ .
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Now, the class of such bimodules is in general unstable under composition, i.e. modulo phases the tensor products
will in general collapse to the classical case. Indeed, since we cannot expect a complete symbol calculus of quantized
symplectomorphisms by [27], one has to change the category or select composable objects.

1. The most direct way to do so is to consider composable elements at the level of adapted equivalence classes.
Given formal deformations ?i of symplectic manifolds X i , composable canonical relations Λi ⊂ X i × X i+1 with
quantizations ∗i = Si (?i ⊗ ?

op
i+1) adapted to Λi , by i∗∆[?⊗ ?op

] = 0 one can always find de Rham representatives of
[∗1 ⊗ ∗3] whose restrictions to C are basic, i.e. vanish along the fibers of π14|C . Suppose that this is true as well for
the relative class, i.e.

i∗C ([∗1 ⊗ ∗2]Λ1×Λ3) ∈ π∗ H2
d R(X1 × X4,Λ1 ◦ Λ3)((λ)),

where π := π14|(C,C ∩Λ1 ×Λ3). Then analogously to [5, ch. 5] one can construct an adapted equivalent star product
? which is as well adapted to C , which means that IC := IC [[λ]] is a ?-left ideal and its Poisson normalizer N (IC ) a
?-subalgebra. Then the induced star product (N (IC )/IC , ∗

′) is adapted to Λ1 ◦ Λ3 with class determined by

i∗C ([∗1 ⊗ ∗2]Λ1×Λ3) = π∗([∗′
]Λ1◦Λ2),

since π∗IΛ1◦Λ3 = i∗C (IΛ1×Λ3 ∩ N (IC )).
2. Another strategy is to find some symbol calculus in the derived category of Lagrangian modules. The latter was

originally considered in the holomorphic case, first for the sheaf of (micro)differential operators (cf. [17, ch. 5]) and
recently for a complex analogue of deformation quantization in [20]. However, in the formal real case, λ-convergence
problems remain, this corresponds to the suggestion of Nest and Tsygan in [25] to modify the localization procedure.
In case of a cotangent bundle T ∗Q one can again consider fiberwise polynomial algebras over C((λ)), then the derived
category of those modules supported on exact sections which intersect pairwise transversally is stated in [6,19] to be
A∞ equivalent to the Fukaya category “quantizing” the Morse complex on Q. This relates ? representations to mirror
symmetry.
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Appendix. Sketch of the symbol calculus of oscillatory distributions

Nice detailed expositions of this theory mainly due to Hörmander [16] are [7,9] for the semiclassical and [12] for
the conic (λ-free) case.

A.1. Generating functions

Recall that the image of a section η of T ∗Q
π
→ Q is Lagrangian if and only if dη = 0, i.e. η is locally the differential

of some function on Q, since η∗θ = η for the canonical form θ = T ∗π on T ∗Q. A Lagrangian manifold L ⊂ T ∗Q
with caustics (i.e. critical values of π |L) now can be locally obtained as well from functions φ on B := Q × Rk (or

any surjective submersion B
ρ
→ Q) via the image Lφ of im dφ under symplectic reduction of T ∗ B with respect to the

annulator of the vertical bundle ker(T B → ρ∗T Q)0, which is given in coordinates as

Lφ =

{(
q,
∂φ

∂q
(q, ξ)

)∣∣∣∣ ∂φ∂ξ (q, ξ) = 0
}
. (16)

If im dφ and C intersect cleanly, Lφ is the immersion iφ of the fiber critical set Σφ := {
∂φ
∂ξ

= 0} such that caustics

correspond to degenerations det ∂
2φ

∂ξ2 = 0, which allows us to attack their local classification by considering some
equivalent φ as unfolding of ξ 7→ φ(0, ξ), cf. [1]. In fact, as proved by Hörmander, the choice of φ is locally unique
up to (strict) automorphisms of B, additions of constants and direct addition of quadratic forms, cf. [7, Th. 4.18].
Globally, [21] claims that, besides the Liouville class [i∗Lθ ] occurring already for Lagrangian sections, the obstruction
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to find some φ ∈ C∞(Q × Rn) yielding L = Lφ is given by the K 1(L) homotopy class defined by the “difference”
k : L → U (n)/O(n) of T L and T ∗

L Q, as the latter define sections of the bundle of Lagrangian subspaces of TL T ∗Q
isomorphic to L × U (n)/O(n). In particular, the winding number µ.[γ ] := deg[det2 ◦k ◦ γ ] associated to some loop
γ : S1

→ L is called its Maslov index, and µ the Maslov class of L . Thus, for instance, the circle in C (harmonic
oscillator) does not admit a single generating function (note that this obstruction cannot be circumvented by replacing
Rn by tori, as the first case covers the second in any sense).

Another example to have in mind for the theory of Fourier integral operators is the classical action functional
S(γ ) =

∫ 1
0 L(γ̇ )dt on the fibration which maps a convenient manifold of free paths [0, 1] → Q to their ends in

Q × Q. If the corresponding Hamiltonian system given by the Legendre transform of L is complete, then L S is (up to
symplectic conjugation given by momenta inversion (q, p) = (q,−p) in T ∗Q) the graph of its time 1 flow.

A.2. Oscillatory distributions

Basic elements of short wave asymptotics are the the WKB-waves, i.e half densities of type e−i S/λaλ with phase
S ∈ C∞(Q) and aλ a λ power series of half densities on Q. Their key property is given by the stationary phase
formula: If Rk

3 ξ 7→ φ(q, ξ) is a family of WKB phases such that Lφ has no caustics, then their superposition

I (φ, a)(q) :=
eiπk/4

(2πλ)k/2
∫
ξ∈Rk eiφ(q,ξ)/λa(q, ξ)dkξ is λ-asymptotically equivalent to the WKB wave

I (φ, a) ∼ e
i
λ
φe−

iπ
2 ind ∂2

ξ φ

 a√
| det ∂2

ξ φ|

+ O(λ)

 ◦ ρ |
−1
Σφ
. (17)

where φ ◦ ρ |
−1
Σφ

coincides with the enveloping phase (Huygens’ principle). It follows that if the composition∫
Q I (φ, a)I (ψ, b) is well defined, then its asymptotics may be written as sum (integral) over the intersection points

Lφ ∩ Lψ = {d(φ−ψ) = 0} in the case of transversal (clean) intersections, which allows us to lift the singular support
of such distributions to their microsupport W F(I (ψ, a)) := supp(a ◦ i−1

ψ ) ⊂ Lψ in phase space T ∗Q.

Indeed, via π |L−1 the development (17) may be naturally identified with a half density on L such that the
singularities of the denominator in (17) at caustics appear as artefact of the projection π |L onto Q. Moreover, if
the microsupports of a set of oscillatory distributions I (φi , ai ) all lie inside some single Lagrangian L , then the
differences of the pulled back phases in (17) define locally constant Čech 1 cocycles on L corresponding to the class
(1). In summary, the leading asymptotics of oscillatory distributions O(L) microsupported on L are described by
constant sections of the flat complex line bundle

|∧|
1
2 L ⊗ exp

(
i

λ
i∗L [θ ] −

iπ

2
µ

)
called principal symbols. In particular, the canonical isomorphisms O(L) = O(L) and O(L × L ′) = O(L)⊗̂O(L ′)

allow us to speak of distributions microsupported on canonical relations L ⊂ T ∗Q × T ∗Q, which per definition
provide the kernels of Fourier integral operators (FIOs). Then the composition of FIOs, if well defined, corresponds
to the naturally defined composition of principal symbols, cf. [7, ch.6].

A.3. Reminder on deformation quantization

In particular, the kernels of pseudodifferential operators are oscillatory distributions microsupported on the identity
(i.e., the conormal bundle of the diagonal in T ∗(Q × Q)), which is naturally identified with T ∗Q. Then star products
arise as asymptotics of their composition. These products were defined purely algebraically for any symplectic (or
Poisson) manifold (X, ω) in [2] (see also the survey articles [11,15]) as a formal deformation (C∞(X)[[λ]], ?) of the
classical algebra (C∞(X), ·) by a sum of bidifferential operators

? :=

∞∑
i=0

λi ?i (18)

with ?0 = ·, such that
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i. ? is associative [?, ?] = 0, which may be written order by order as

2b ?n +

n−1∑
i=1

[?i , ?n−i ] = 0, (19)

where b, [., .] are the Hochschild coboundary2 and Gerstenhaber bracket5 of C(C∞(X),C∞(X)), respectively;
ii. the commutator i

λ
[., .]? deforms the classical Lie structure i

λ
[ f, g]∗ = { f, g} mod O(λ), thus by (22) we have

?1 =
i

2
{., .} + bS1 (20)

iii. 1 ? f = f ? 1 = f .

Two such deformations ?, ?′ are considered equivalent if they are linked by some algebra isomorphism S given by a
series of differential operators S = id +

∑
∞

i=1 λ
i Si ; this is denoted as ?′ = S(?) := S−1

◦ ? ◦ S ⊗ S. In the case of a
symplectic manifold (X, ω) the equivalence classes are in bijection with λ−1

[ω] + H2
d R(X)[[λ]], see [24, App.] for a

short demonstration or [11] for more references.
The equivalence of two star products ?, ?

′

in case H2
d R(X) = 0 was first observed by Lichnerowicz: By applying

1 + λS1 with S1 as in condition (20), we may assume that ? = ?′ =
i
2 {., .}. If now ? = ?′ mod O(λk), then by (19)

b(?k − ?′k) = 0 and b(?k+1 − ?′k+1)+ [?1, ?k − ?′k] = 0. (21)

Now, antisymmetrization and ω provide isomorphisms

HC(C∞(X); C∞(X)) ∼= Γ
(∧

T X
)

∼= Ω(X) (22)

calculating the Hochschild cohomology2 of C∞(X) (Kostant–Hochschild–Rosenberg (HKR) theorem), on which
ad(?1) acts as de Rham coboundary d; hence by H2

d R(X) = 0 it follows ?k − ?′k = − ad(?1)Sk for some derivation
Sk ∈ ker b. Thus id + λk Sk provides the induction step for constructing an equivalence between ? and ?′.
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